В рамках проекта «IT Академия Samsung» в треке «Искусственный Интеллект» компания Samsung открывает цикл лекций Samsung Innovation Campus. Он ориентирован на тех, кто уже освоил основы нейронных сетей и задач по CV/NLP и двигается дальше.

Лекции проходят на регулярной основе, их авторы — это специалисты Samsung Research Russia, Института системного программирования РАН, компании Сбербанк и преподаватели наших университетов-партнеров.

Ссылка на плейлист цикла — https://youtube.com/playlist?list=PLJEYfuHbcEIB-DdeoWaQ6Bzt0903kbmWK

В лектории можно прослушать следующие лекции:

1. «Как эффективно проводить эксперименты: базовая структура проекта, процесс перебора гипотез, трюки для обучения нейросетей» . Автор Роман Суворов, автора курса по NLP, ведущий инженер московского Центра ИИ Samsung, автор курса «Нейронные сети и обработка текста«. Ссылки на видео и на презентацию

2. «Ускорение вычислений в нейронных сетях: эффективные алгоритмы умножения матриц и свертки, оптимизация графов вычислений, квантизация нейронных сетей» . Автор Константин Архипенко, сотрудник Института системного программирования РАН, преподаватель трека «Искусственный интеллект» IT Академии Samsung на ВМК МГУ. Ссылки на видео и на презентацию

3. «Generative adversarial network: постановка задачи и применение» , как применяется механизм совмещения двух вероятностных распределений для генерации реалистичных изображений. Автор Денис Корженков, инженер-исследователь московского Центра искусственного интеллекта Samsung. Ссылки на видео и на презентацию

4. «Image2Image и перенос стиля» . Обзор основных подходов к image2image задачам: perceptual loss, cycle loss, обращение GAN и манипуляции в латентном пространстве. Автор Елизавета Логачёва, инженер-исследователь московского Центра искусственного интеллекта Samsung. Ссылки на видео и на презентацию

5. «Обзор применения нейросетей в компьютерной графике» . В лекции рассматривается ряд сценариев, в которых нейронные сети могут упростить создание компьютерной графики: рендеринг, синтез объектов, анимация персонажей. Автор Глеб Стеркин, инженер-исследователь московского Центра искусственного интеллекта Samsung. Ссылки на видео и на презентацию

6. «Neural rendering, генерация новых изображений без построения геометрии сцены» . Лекция посвящена разбору подходов рендеринга сцен с помощью нейронных сетей, не требующих явного знания геометрии объекта. Автор Глеб Стеркин, инженер-исследователь московского Центра искусственного интеллекта Samsung. Ссылки на видео и на презентацию

7.  «Методы одностадийной детекции» . Рассмотрение идеи якорей на примере архитектуры YOLO. Разбор архитектур других One Stage детекторов: SSD и Retina. Автор Михаил Романов, ведущий инженер московского Центра искусственного интеллекта Samsung, автор курса «Нейронные сети и компьютерное зрение» . Ссылки на видео и на презентацию

8. «Методы двустадийной детекции» . Из каких компонентов состоит RCNN, что такое Region Proposal Network, что такое Region of Interesting Pooling, как соединяются эти компоненты и как работает Mask RCNN. Автор Михаил Романов, ведущий инженер московского Центра искусственного интеллекта Samsung, автор курса «Нейронные сети и компьютерное зрение» . Ссылка на видео

 9. «Поиск похожих изображений» . Как подходить к проблеме поиска похожих изображений, как разложить лицо на составляющие, и при чём здесь классификационные сети. Автор Андрей Шадриков, руководитель направления по исследованию данных компании Сбербанк. Ссылки на видео и на презентацию

10. «Мобильные архитектуры нейросетей и фреймворки для их запуска» . Основные способы снизить время/латентность и размер мобильной сети. Краткий обзор фреймворков для телефонов и общие подходы к ускорению — от CPU к GPU и NPU, от FP32 к FP16 и INT8. Автор Алексей Ивахненко, ведущий инженер московского Центра искусственного интеллекта Samsung. Ссылки на видео и на презентацию

11. «Сегментация» . Михаил Романов рассматривает архитектуры Fully Convolutional Network, U-Net, U-Net-on-Steroids, RefineNet, PSP Net, разбирает их логику и рассказывает почему те или иные архитектуры используются. Ссылка на видео

12. «Оптический поток» . В лекции рассматривается задача оптического потока, математические концепции и основные архитектуры, которые позволяют решать эту задачу: FlowNet, SpyNet, PWCNet. Лекцию читает Михаил Романов, ведущий инженер московского Центра искусственного интеллекта Samsung. Ссылка на видео

13. «Полуавтоматическое составление датасета и активное обучение» . Лекция посвящена автоматизации процесса разметки. В ней будут разобраны методы активного обучения и другие итерационные подходы. Лекцию читает Роман Суворов, ведущий инженер московского Центра искусственного интеллекта Samsung, автор курса «Нейронные сети и обработка текста» ​. Ссылки на видео и на презентацию

14. «Kaggle и спортивный ML» . В лекции разберутся типы соревнований, их плюсы и минусы, а также спортивное программирование в общем. Рассмотрятся тактики участия в соревнованиях, а также то, что полезного можно извлечь не только для работы в индустрии, но и в обучении. Лекцию читает Алексей Харламов, инженер-исследователь московского Центра искусственного интеллекта Samsung. Ссылки на видео и на презентацию

15. «Итак, сеть готова. Что дальше?» . В лекции рассмотрены теоретические и практические аспекты реализации ПО, использующего нейронные сети в продуктовых решениях. Лекцию читает Дмитрий Яценко, преподаватель IT Академии и IT школы Samsung, главный инженер АренаДата, старший преподаватель кафедры информационных и измерительных технологий ФВТ ЮФУ. Ссылки на видео и на репозиторий

16. «Анализ и прогнозирование временных рядов» . Преподаватель программы «IT Академия Samsung» в РТУ МИРЭА Иван Юрченков рассказывает о стационарности и нестационарности, о методах разложения временного ряда на трендовую и сезонную составляющие, а также рассматривает динамические модели и архитектуры нейронных сетей для долгосрочного и краткосрочного прогнозирования. Ссылки на видео и на презентацию

17. «Автоматическая суммаризация (реферирование) текстов» . Иван Лазаревский, преподаватель IT Академии Samsung, преподаватель МГТУ СТАНКИН и руководитель отдела анализа данных Visiology рассказывает как можно сократить текст, добраться до самой его сути через выделение ключевых фраз, предложений и генерацию аннотации. Ссылки на видеона презентацию и на репозиторий